Compression

Ulrik de Muelenaere
Topics:
-Information and Entropy
-Huffman Coding
-Arithmetic Coding

Compression

- Compression deals with encoding and decoding sequences of symbols.
- The symbols are taken from an alphabet

$$
A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} .
$$

- Any symbol from the alphabet can be represented using $\log _{2} n$ bits.
- In the probability distribution $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}, p_{i}$ gives the probability of the symbol a_{i} occurring.

Information

- We can define the information we gain by observing the occurrence of a symbol with probability p as $I(p)=-\log _{2} p$.
- The base of the logarithm can be changed to use units other than bits.
- As an example, consider a fair coin toss. If the result is heads (or tails), we gain $I(0.5)=1$ bit of information.
- If both sides of the coin are marked heads, we gain $I(1)=0$ bits of information when the result is heads, since we already knew it would be heads.
- If a biased coin results in heads with probability 0.25 , we gain $I(0.25)=2$ bits of information if the result is heads, but only $I(0.75) \approx 0.42$ bits if it is tails.

Entropy

- Given a probability distribution P, we can calculate the average information gained per symbol using

$$
\begin{aligned}
H(P) & =\Sigma_{p \in P} p I(p) \\
& =-\Sigma_{p \in P} p \log _{2} p
\end{aligned}
$$

- This is known as the entropy, which is also a measure of uncertainty.
- Shannon's source coding theorem states that the entropy places a lower bound on compressed size. A sequence of n symbols, with probability distribution P, cannot be compressed (without loss of data) into less than $n H(P)$ bits (as n tends to infinity).

Entropy

- It can be shown that
$0 \leq H(P) \leq \log _{2} n$.
- $H(P)=0$ when a single symbol has $p=1$ and all other symbols have $p=0$.
- $H(P)=\log _{2} n$ when all symbols have equal $p=1 / n$.
- This shows that evenly distributed probabilities produce a high entropy, which limits compression. Uneven distributions lower entropy, allowing for more compression.

Huffman Coding

- Huffman coding encodes each symbol as a string of bits.

Symbols that have a higher probability are assigned shorter bit strings than those that have a lower probability.

- Bit strings are assigned to symbols using a prefix code. This means that the bit string representing a symbol is never a prefix of the bit string representing another symbol.
- This property allows for easy decoding. Once the decoder recognizes a bit string, it can decode the symbol, without trying to determine if it is a prefix of a longer bit string.
- A prefix code can be represented as a binary tree. A 0 in the bit string means following the left child and a 1 means following the right child. The symbols are the leaves of the tree and each internal node has 2 children.

Huffman Coding

BEEFBURGER
0010101110011010111001001

Huffman Coding

BEEFBURGER
0010101110011010111001001

Huffman Coding

Arithmetic Coding

- Arithmetic coding encodes the entire message into a single fraction $n, 0 \leq n<1$.
- This allows it to come closer than other algorithms to the optimal encoding specified by the entropy, in many situations.
- The probability distribution can change as each symbol is encoded. This also allows for a more optimal encoding, as long as the encoder and decoder change the probabilities in the same way. This can be used to create coders optimized for a specific language.
- This is only an introduction. We will not discuss implementation details, such as achieving the necessary precision.

Arithmetic Coding

Encode DEQUE

Arithmetic Coding

Decode 0.514

